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Smoothed particle hydrodynamics (SPH) is formulated in two-
dimensional axisymmetric coordinates. Starting with a three-dimen-
sional Cartesian representation of SPH we integrate out the angular
component and find a twao-dimensional cylindrical description, A
smoothed “particle” in this formulation hecomes a smoothed “torus.”
The hoop stress, resulting from interactions within the toroidal ring, is
a natural consequence of the derivation. No pathological behavior is
observed at the symmetry axis. The formulation has been extended to
include the entire stress tensor, not just the pressure, and is therefore
applicable to a wide range of materials and flow speeds. Three calcula-
tions are presented and compared to known results.  © 1993 Academic

Press, Inc.

INTRODUCTION

Smoothed particle hydrodynamics (SPH) is unique in
computational continuum dynamics in that it uses no spa-
tial mesh. Tt is a pure Lagrangian particle method developed
by Lucy [1], Monaghan [2-4], Gingold [5, 6], and Benz
[7]. SPH has many nice features such as robustness,
conceptual simplicity, ease of adding new physics, a natural
treatment of voids, and the ability to handle large strains in
a Lagrangian frime. The method has been used almost
exclusively for astrophysical applications where the {lows
are three-dimensional (3D), involve fluids, and are ofien
sell-gravitating. The relative ease of doing 3D calculations
with SPH is demonstrated by the abundance ol such simula-
tions appearing in the astrophysical literature. One reason
why 3D calculations are more easily done with SPH than
other techniques is the conceptual simplicity of the method,
but it also appears that SPH has an efficiency advantage
over Eulerian in 3D [8], at least for some problems.
Recently, Libersky and Petschek [9] have incorporated
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material strength and (he complete stress and striin tensors
into Cartesian formulations of SPH using lincar elasticity.
Although no direct comparisons with Eulerian codes have
been made for problems similar to those reported there, in
many cases we see little evidence for the efficiency gains
reported in [87]. Although many three-dimensional SPH
calculations can be performed on workstations, the run
times are still significant and there is a strong need for a two-
dimensional axisymmetric formulation of smoothed particle
hydrodynamics.

Some axisymmetric SPH algorithms have been for-
mulated and are currently in use. Stellingwerf [10] simply
multiplies the ordinary Cartesian interpolational kernel
(smoothing function) by l/r and renormalizes. Coleman
and Bicknell [11] proceed in a similar way. These
approaches are attractive in their simplicity and seem to
perform well for many hydrodynamic flows. But, the hoop
stress, which one expects to see in cylindrical coordinates
(see Fig. ! and discussion below Eq. (25)) appears to be
absent.

The companion paper “High Strain Lagrangian
Hydrodynamics™ appearing in this volume contains
material relevant to this paper. In order to avoid repetition
we simply refer the reader to “HSLH”

THE MOMENTUM EQUATION: KERNEL ESTIMATES
AND COORDINATE FRAMES

The acceleration of a Lagrangian volume element subject
to elastic forces is

dU’m 1 gg*#
e~ paxt’

(1)
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Dependent variables are the density p, velocity vector [/?%,
and the stress tensor ¢*f, Independent variables are the
spatial coordinates x* and the time ¢. The time derivative
is a total {Lagrangian) derivative. We will use both
tensor (superscripted) and vector (bold) notation in the
derivations. It is convenient in deriving SPH equations to
rewrite (1) as a total derivative and a correction,

A “ﬂap
dt —  axF\ p 2 axf

This will lead to forces between particles with manifest
Galilean invariance and action equal to reaction (Eq. (6),
below). We seek an estimate of the acceleration at a point
{x) using nearby information and therefore multiply by an
interpolating kernel ( W) and integrate over all space:

(2)

dU*(x) dUAX)

< — >=J‘W{x—x) _—dx (3)

dU*(x) 3 [o*(x') ,

S >:_IWW(p(x’))d"
ﬁ(W"mﬁ("')a"{x')dx'. (4)

pi(x’) ox'®

If the last term in (4) is linearized, then after an integration
by parts we can write the kernel estimate of the acceleration

as
dU%(x
< dt >= x”J
¢*¥(x) &
p(x) ax?

aﬂ x )
p(x)

(5)

[ wox)ax,

If nearby information is available only at discrete points j,
the volume element is replaced by m;/p; and the integrals by
summations [ 7] giving

auz; dU(x;) é O.;:,B
dt < dr > ax? ? Tpr i
o g
P—? 6x;-8 ; m; W (6)

This equation, in which only W= W(x;—x;) depends on
the continuous variable x;, gives the acceleration of a fluid
particle i due to forces from neighboring particles ;.

Let us write out the x and z components of {6) in a three-
dimensional Cartesian frame of reference,

dur 9 o é o

i j m,-p;? W”_é’_y,g‘mjp%f W
mai!;m,% W, Gfgﬁaig‘m’W”
and
dU: 2 - 3 vz
i A s W g I W
_ai,;mf% i 2;%;'”; i
_%%gmjwﬁ ”hhaazmw (8)

We now change the coordinate frame from 3D Cartesian
to 3D cylindrical using the contravariant tensor transforma-
tion 6** =a,%a,f 6", where a,* are the direction cosines.
Finally, without loss of generality because of the cylindrical
symmetry, we choose 8, =0. This gives

du'’ d ij( 29 4 29) w
= —-—) — (g} cos 6% sin
dt éri 7 p; 4
1 a r (i1 H
_;@ P (O'j—a'j. )cos §,sin 8, W,
ig 7
d
~% o7 cos O, W, — me W,
)
- 6
?O' a_ZZmJWU (9)
] lj
and
du; 0 om 0w 14 5 oW
——=—5") 50, cosd W, = g7 sin B,
dt or, pr Y 80,7 p; /
d —m 1
—— YN LW~ — gt W
o 2 mW (10)
——20';“— m e
P Zi o

Equations (9) and (10) determine the radial and axial
acceleration of a particle in cylindrical coordinates in
axisymmetric problems. By letting the number of particles
in a ring approach infinity we can integrate out the angular
components and obtain a two-dimensional formulation of
SPH in cylindrical symmetry.
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INTEGRATION

The summations in (9) and {10) represent sums over par-
ticles in a ring as well as sums over neighboring rings, We let
the number of particles in a ring approach infinity so that an
integration over the ring can be performed, at least for
convenient kernels. The requisite integrations in (9) and
(10) can be readily done with a Gaussian kernel, which,
however, is computationally less efficient than the B-splines
normaily used in SPH. The Gaussian exp(—r*/k*) in two
dimensions effectively averages over a range H = A, the root
mean square expectation of r, but gives poor results if it is
cut off at r < 34 [4], whereas the commonly used B-spline
has compact support on r <24 and (r?)>'?= H =080k
Thus the Gaussian requires (3Hz/2H;)?=1.5 times
as many neighbors to be handled for the same effective
averaging as the B-spline. Run times go like the square of
the cutoff distance over the square of the range making the
Gaussian less efficient than the spline, We have not yet been
able to extend our technique to B-splines. A Gaussian
kernel has the following form in a three-dimensional
cylindrical coordinate frame for a particle located at
(ris 91’) Z,-).

Wix—x,, h)=e =i+ =0 +2mll—costo — 61}/

— Ge—ief cos(Bfﬂ,‘).

(11)

Since for a torus of mass m the mass in the interval 4 is
m df/2n, the 8 integration of (11) gives the two-dimensional
“cylindrical” kernel

W.(&)=1(&) e G, (12)

where ¢ = 2r,r/h%, I, is the modified Bessel function of zero
order, and G is the two-dimensional Gaussian function
exp{ —[(r—r)?+(z ?]/h?}. Other integrals required
by (9) and (10) are

;—njwcosad(a:m%, (13)
ij W cos? 0 df = W% (14)
L modn= EWC%, (15)
+ %smﬂcoséd@-—élﬂ%- (16)

After the integrations have been performed on (9) and (10),
the radial and axial accelerations of a particle are

dU:_ (3 mj ”_10+12 6810 Iz
dr ar,.jp}("f 21, 2, ) C
¢ -m, _I
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where henceforth the argument of W, and the Bessel
functions is & = 2rr,/h".

DIFFERENTIATION

The final step in the derivation is differentiation. The
derivatives required by (17) and (18} are

aw 2 I,
P R N
r; hz(r' rflo) ¢ (19)
oW,
—-5_;-__ —F(ZI-—ZJ-) W(. (20)

I, 27 1, 1 I,
k| - = . —= ) 21
(IW) w [ A 2”(”10)] W. @b

K

d

g /I I,
B 0 Y = W,
5z, ([o W‘) e 7,

i(éwf =_2 i r-u) W..
ari IO h IO 4 210

The finai form for the particle accelerations is obtained by
using the derivatives (19)3-(23) in {17, 18) and collecting
terms:

(22)

(23)

dau’;,

Zm N 10+12)_r_(1_1
dt WA pj 21, )\

a,;i’ [ O_rz
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FIG. 1. Volume element of 2 hydrodynamic (no deviatoric stresses)
probilem, illustrating the outward force due to pressure forees on surfaces
of constant 8. If the pressure is constant, this “hoop stress” gives zero net
outward force as required when combined with the outward pressure force
on the inner cylindrical surface at r and the greater inward force on the
outer surface at r + dr.

aus;

rz 11 O.:
_—_—— m — . -}-L(zi—-z.)
dr Z {p ( o ’) o] !

+a§‘( [1)+a;:( )}
—slr—r=1+—=(z,—z;) ;.
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Equations (24) and (25) give the radial and axial
accelerations of a smoothed particle (torus) for cylindrically
symmetric problems. The form of these equations, including
the Bessel functions, is due to the choice of kernel
(Gaussian). An important consequence of the derivation is
that if /= j in the summations above, the right-hand sides
no longer vanish as they do in Cartesian formulations. This
contribution to the acceleration is a “self -force” due to par-
ticle interactions within a toroidal ring and represents the
hoop stress tending to push material away from the axis.
[n continvum formulations it is produced by the cutward
component of the stress exerted across the surfaces of
constant # bounding the volume element, as in Fig. 1.

(25)

THE ENERGY EQUATION

The equation for the specific internal energy is

dE e au ™
7o ? P (20)
As with the momentum equation, we write (26)
xf o 2prie o
d_E o™ dplU* a*fU* dp 27)

di pl oxP p? oxF
Proceeding as before, (27) is transformed into a particie
equation. The result is

dE; f‘ﬁ
d ')“ (U —

& a2 Ui vIm Wy

(28)

581/109/1.6

where the reformulation of (26) into (27) has led to the
appearance of the velocity difference, and therefore Galilean
invariance. Expanding (28) into Cartesian three-space gives

dE, af" . .
dr p?ox, Z(U —Uiym W,
a8
ST 5y, LI U m W,
i L)
O-?z X x
i Y(UF=U)YymW,
i ' i
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P
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Transformation of (29) into the r — z plane of cylindrical
three-space and choosing 8, =0 gives

L7 sy U cos 8) m, W,
df_ﬂfa_f,-g'( —Ufcos B)ym,;
o’
+ =5 =3 (U]~ Ujcos ) m, W,
! "'lj
g’ d
p,af?[ )
Z‘Ei‘
%1
2118, ] (Ui=U)mW, (30)

The §-integration of (30) gives
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(31)

Differentiation of (31) with the use of (19)-(23) gives the
final form of the particle energy equation,

dE,; 2Z W ol e I
a— R {}T[ "("'_”10)

i

CONSTITUTIVE EQUATIONS

The density equation and constitutive relations are
treated as in “HSLH.” We present here only the particle
equations for the strain rates in 2D cylindrical coordinates.
These equations are derived in the same way as the momen-
tum and energy equations. The results are

8?:_ ._-’W(_ U*,' ri—r,—
h2§: pj IIU

I 1 I
—U |l r=2—=r {1+ 33
’["’10 2”( +10)Tf )
e 2 , :
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- I
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(36}

ARTIFICIAL VISCOSITY AND HEAT FLUX

For a discussion of artificial viscosity and artificial heat
conduction we also refer the reader to “HSLH.” We present
here only the transformation of the u; term (“HSLH,”
Eq. (26)) into cylindrical two-space. In order to obtain a
form of (U,—U,)-(x,—x;) appropriate in axisymmetric
coordinates we write it in cylindrical three-space, assuming
f.=0,

(X=X} (X, = X))

=rgfy+ (4 (1 —cos 8)+ 2,2, (37)

where

ry=r—r;, Iy=z;—Z. (38)
We weight the artificial viscous interaction between par-
ticles i and j by the smoothing function (11} and integrate

out the ¢ component. The result is
(x,— ’.‘j) X — xj)

I
= [r,.jf,}.ju zyzgt(riFi+ Fir) (1 - I—‘)] W..  (39)

0

“HSLH” equations (25)-(27) with (39) for the dot product
in “HSLH” equation (26) give the artificial viscosity used in
our formulation of cylindrical SPH. Concerning the artifi-
cial heat flux, the transformation of “HSLH” equation (28)
to cylindrical coordinates is trivial because differentiation of
the three-dimensional Gaussian kernel gives —2W,x /A" so
that “HSLH” equation (28) may be written as

2 "
o= -2y e _E)w,

; (40)
W By
after which integration just replaces W ; by W..

CALCULATIONS

The Noh Problem

Details of the Noh [12] problem are discussed in
“HSI.H.” The calculations described here are the cylindrical
Noh problem computed with our 1D cylindrical code and
the spherical Noh problem computed with the 2D cylindri-
cal code. Results of the 1D calculations are to be compared
with the 2> Cartesian calculations in “HSLH.” Results
of the 2D calculations are to be compared with the 3D
Cartesian run in “HLSH.”

Figure 2a shows density profiles at 1 = 60 obtained from
1D calculations using four different values of the smoothing
length (=200, 1,00, (.50, 0.25) and two particles per A.
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FIG. 2. (a) Density proflles at # =60 for the cylindrical Noh impltosion problem as computed with 1D cylindrical SPH. Results of four calculations,
corresponding to different values of the smoothing length, and the exact solation are shown. (b) Density profiles at ¢ = 60 for the spherical Noh implosion
problem as computed with 2D cylindrical SPH. Results off two calculations, corresponding to different values of the smoothing length, and the exact

solution are shown.

The density behind the shock is seen to be converging to the
known solution p = 16. The artificial viscosity parameters
had values & = § =2.5 in the calculations, No artificial heat
flux was used (g, = g, = 0}, hence the “hole” near the origin
due to the “wail heating” effect. This “cylindrical” Noh
problem can also be computed in 2ID Cartesian coordinates.
Results of those calculations are reported in “HSLH.”
Figure 2b shows density profiles at 1 = 60 obtained from
2D calculations using two different values of the smoothing
length (#=1.40, 0.70) and one particle per # in each coor-
dinate direction. There were 7904 and 31,576 particles used
in the two calculations. As in the 1D case, the initial radius

of the particle cloud was 100 with each particle given unit
density, unit speed inward, and zero internal energy. We
observe a “fuzzy” curve showing that symmetry has been
lost in the calculation. The particles causing the problem are
located near the axis of symmetry. We have not yet been
able to identify the source of the error. In most calculations
this behavior is not noticeable, but the severity of the spheri-
cal Noh implosion problem clearly manifests the error. The
SPH solution falls short of the correct value of 64 for the
density behind the shock front, although convergence with
finer resolution is suggested in the figures. Crowley [13] has
suggested that a tensor artificial viscosity, rather than the
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FIG. 3. Debris cloud at 6.4 us for the impact of a copper pellet on an aluminum bumper plate at 5.55 km/s: (a) calculation; (b) experiment [14].

scalar formulation used here, would improve the solution.
The 2D calculations took 3.5 and 23 h, respectively, on a
15 Mflop workstation.

Hypervelocity Impact

Figure 3a shows the SPH calculated debris cloud at
6.4 us resulting from the normal impact of a 3-g copper disk
(11.18 mm diameter, 3.45 mm thick) on a 2.87-mm thick
aluminum bumber plate at 555 km/s. Figure3b is a
radiograph of the actual cloud 6.4 us after impact [14]. The
figures are scaled equally. The experimental impact was not
exactly normal, the copper disk having a 5.4° yaw. Material
properties used are given in Table I, where g is the shear
modulus, Y is the yield strength, I” is the Gruneisen coef-
ficient, and (C, &) are the parameters in the linear shock
velocity—particle velocity fit. We took the smoothing length
to be A =0.16 mm with 1.8 particles per 4 giving 15,564 par-
ticles total in the calculation. The calculation took 1175
cycles and 2.5h on a 15 Mflop workstation. The peculiar
shape of the aluminum debris cloud and copper disk are
captured nicely by the simulation. Since the figures are
scaled equally a ruler can be used to compare various
dimensions in the SPH particle plot with the X-ray
photograph. Such measurements show superb agreement
between experiment and caleulation.

Long Rod Penetration

Figure 4a shows the hole made by a tungsten rod
penetrating a thick slab of steel as computed with SPH. The
actual hole, as reported by Hohler and Stilp [15], is shown
in Fig. 4b. The initial length and diameter of the tungsten
rod were 29.12 mm and 2.80 mm, respectively (L/D = 10.40)
and its speed was 3.58 km/s. Material properties used are

given in Tablel. The smoothing length wused was
=047 mm with two particles per s giving 51,238 paticles
total. The calculation was run to 50 us, at which time the
hole growth ceased. This required 1493 cycles and 44 h on

14 : —
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FIG. 4. Hole produced by the impact and penetration of a Tungsten
rod (LD =104} into steel at 3.58 km/s: (a) calculation; (b) experiment
[151.
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TABLE1

Propertics of Materials Used in the Calculations

polglee)  Clemjus) S p(Mb)  Yo(Kb) T
Copper 8.93 0.39 1.50 0.46 4.50 200
Aluminum 27 0.53 1.50 0.25 5.50 1.70
Tungsten 19.23 0.40 1.23 1.54 18.00 1.54
Steel 7.89 045 1.50 0.77 6.00 202

a 13 Mflop workstation. The simulation shows a depth
{46 mm) which is 4 % smaller than the experiment (48 mm).
The diameter of the hole in Fig. 4b appears to be a constant
12 mm, whereas the SPH result shows some narrowing near
the top. The diameter of the SPH hole is near 12 mm
through most of its depth. The code shows a crater lip in the
steel similar to the experiment. Hohier and Stilp report that
no tungsten was found on the sides of the crater hole. This
is contrary to the calculation in which the tungsten plated
out evenly in the cavity during penetration.

DISCUSSION

A two-dimensional axisymmetric formulation of SPH has
been described and three calculations presented. We
observe little pathological behavior at the axis but we do see
some unphysical motions near the origin in the spherical
Noh problem. The formulation presented includes the entire
stress tensor, making it applicable to problems where
material strength is important. At present the formulation is
limited to the use of a Gaussian kernel which is not
as efficient as B-splines. Two impact calculations agree
very well with experiment but the SPH solution for the
Noh problem is not adequate. We hope to see this
solution improved by correcting the error at the axis and
implementing a tensor viscosity as suggested by Crowley
[13]. Run times appear longer than Eulerian, owing mainly
to the neighbor searching and particle interactions, but
also the Gaussian smoothing function with subsequent
evaluation of Bessel functions. SPH has many nice features
such as robustness, conceptual simplicity, ease of adding
new physics, a natural treatment of voids, accurate tracking
of material interfaces and the ability to handle large strains
in a pure Lagrangian frame. The method is, however,

largely untested for the broad range of problems for which
mesh-based techniques have proven useful. Given that
three-dimensional calculations are often impractical and
that many two-dimensional problems of interest have a
symmetry axis, cylindrical SPH should provide the needed
test-bed for extensive evaluation of the method. We are
encouraged by the results obtained to date.
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